Cytoplasmic distribution of heat shock proteins in soybean.
نویسندگان
چکیده
Previous analyses of the distribution of heat shock (hs) proteins in soybean (Glycine max L. Merr., var Wayne) have demonstrated that a fraction of the low molecular weight hs protein associates with ribosomes during hs. To more specifically characterize the nature of this association, isokinetic centrifugation of ribosomes through sucrose gradients was used to separate monosomes from polysomes. The present analysis demonstrated that hs proteins were bound to polysomes but not monosomes. Treatment of polysomes with puromycin, K(+), and Mg(2+), which caused dissociation of ribosomes into 40S and 60S subunits, also caused dissociation of the hs proteins. Using the procedure of Nover et al. (1983, Mol. Cell Biol, 3: 1628-1655), a hs granule fraction was also isolated. As in tomato cells, hs granules from soybean seedlings contained the low molecular weight hs proteins as a primary component and a number of other non-hs proteins of relative molecular mass 30 to 40 kilodaltons and 70 to 90 kilodaltons. On metrizamide gradients they exhibited a buoyant density of 1.20 to 1.21 grams per cubic centimeter, typical of ribonucleoprotein particles. Heat shock granules were characterized as unique cytoplasmic particles based on protein composition and buoyant density. Isopycnic centrifugation of ribosome preparations demonstrated that they contained hs granules, but the hs proteins bound to polysomes were not released by KCI/EDTA treatment. Thus, the polysome-bound hs proteins and the granule-bound hs proteins appear to represent two distinct populations of hs proteins in the cytoplasm. Heat shock granules were not distinguishable from ribosomes at the level of resolution used in transmission electron microscopy.
منابع مشابه
A wheat (Triticum aestivum) cDNA clone encoding a plastid-localized heat-shock protein.
Higher plants produce both high mo1 wt (in the range of 70,000-110,000) and LMW (in the range of 15,000-30,000) HSPs in response to heat-stress conditions. During periods of heat stress, plant cells produce an abundance of LMW HSPs that are encoded by gene families (Vierling, 1991). The physiological function of these proteins remains obscure, but the evolutionary conservation of this response ...
متن کاملHDAC Inhibitors and Heat Shock Proteins (Hsps)
Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...
متن کاملHeat shock proteins of higher plants.
The pattern of protein synthesis changes rapidly and dramatically when the growth temperature of soybean seedling tissue is increased from 28 degrees C (normal) to about 40 degrees C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, "heat shock proteins," is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodS...
متن کاملP42: Luteolin Counteracts ER Stress in PC12 Cells through Moderating ER Chaperones and Heat Shock Proteins
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملEffect of enviromental temperature on heat shock proteins (HSP30, HSP70, HSP90) and IGF-I mRNA expression in Sparus aurata
Ambient temperature is one of the most important environmental factors affecting physiological mechanisms and biochemical reactions of living organisms. Thus the effect of ambient temperature on HSPs and IGF-I gene expression levels in the liver and muscle tissues of Sparus aurata were investigated in this research. The levels of HSPs, and IGF-I gene expression of the liver and muscle of Sparus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 86 4 شماره
صفحات -
تاریخ انتشار 1988